Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Molecules ; 29(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38611812

RESUMO

Antibiotic resistance has emerged as a grave threat to global public health, leading to an increasing number of treatment failures. Antimicrobial peptides (AMPs) are widely regarded as potential substitutes for traditional antibiotics since they are less likely to induce resistance when used. A novel AMP named Brevinin-1BW (FLPLLAGLAASFLPTIFCKISRKC) was obtained by the Research Center of Molecular Medicine of Yunnan Province from the skin of the Pelophylax nigromaculatus. Brevinia-1BW had effective inhibitory effects on Gram-positive bacteria, with a minimum inhibitory concentration (MIC) of 3.125 µg/mL against Enterococcus faecalis (ATCC 29212) and 6.25 µg/mL against both Staphylococcus aureus (ATCC 25923) and multidrug-resistant Staphylococcus aureus (ATCC 29213) but had weaker inhibitory effects on Gram-negative bacteria, with a MIC of ≥100 µg/mL. Studies using scanning electron microscopy (SEM) and flow cytometry have revealed that it exerts its antibacterial activity by disrupting bacterial membranes. Additionally, it possesses strong biofilm inhibitory and eradication activities as well as significant lipopolysaccharide (LPS)-binding activity. Furthermore, Brevinin-1BW has shown a significant anti-inflammatory effect in LPS-treated RAW264.7 cells. In conclusion, Brevinin-1BW is anticipated to be a promising clinical agent with potent anti-Gram-positive bacterial and anti-inflammatory properties.


Assuntos
Lipopolissacarídeos , Staphylococcus aureus Resistente à Meticilina , China , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Peptídeos Antimicrobianos
2.
Adv Mater ; : e2402046, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38639483

RESUMO

Magnetic refrigeration technology can achieve higher energy efficiency based on the magnetocaloric effect. However, the practical application of MCE materials is hindered by their poor mechanical properties, making them challenging to process into devices. Conventional strengthening strategies usually lead to a trade-off with refrigeration capacity reduction. Here, a novel design is presented to overcome this dilemma by forming dual-phase alloys through in-situ precipitation of a tough magnetic refrigeration phase within an intermetallic compound with excellent MCE. In the alloy 87.5Gd-12.5Co, incorporating the interconnected tough phase Gd contributes to enhanced strength (≈ 505 MPa) with good ductility (≈ 9.2%). The strengthening phase Gd simultaneously exhibits excellent MCE, enabling the alloy to achieve a peak refrigeration capacity of 720 J∙kg-1. Moreover, the alloy shows low thermal expansion induced by the synergistic effect of the two phases. It is beneficial for maintaining structural stability during heat exchange in magnetic refrigeration. The coupling interaction between the two magnetic phases can broaden the refrigeration temperature range and reduce hysteresis. This study guides the development of new high-performance materials with an excellent combination of mechanical and magnetic refrigeration properties as needed for gas liquefaction and refrigerators. This article is protected by copyright. All rights reserved.

3.
Front Microbiol ; 15: 1352531, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591036

RESUMO

Objective: The limited existing knowledge regarding resistance to antimicrobial peptides (AMPs) is hindering their broad utilization. The aim of this study is to enhance the understanding of AMP resistance, a pivotal factor in the exploration of alternative drug development in response to the escalating challenge of antibiotic resistance. Methods: We utilized metagenomic functional selection to analyze genes resistant to AMPs, with a specific focus on the microbiota in soil and the human gut. Through a combination of experimental methods and bioinformatics analyses, our investigation delved into the possibilities of the evolution of resistance to AMPs, as well as the transfer or interchange of resistance genes among the environment, the human body, and pathogens. Additionally, we examined the cross-resistance between AMPs and evaluated interactions among AMPs and conventional antibiotics. Results: The presence of AMP resistance, including various resistance mechanisms, was observed in both soil and the human gut microbiota, as indicated by our findings. Significantly, the study underscored the facile evolution of AMP resistance and the potential for gene sharing or exchange among different environments. Notably, cross-resistance among AMPs was identified as a phenomenon, while cross-resistance between AMPs and antibiotics was found to be relatively infrequent. Conclusion: The results of our study highlight the significance of taking a cautious stance when considering the extensive application of AMPs. It is imperative to thoroughly assess potential resistance risks, with a particular focus on the development of resistance to AMPs across diverse domains. A comprehensive grasp of these aspects is essential for making well-informed decisions and ensuring the responsible utilization of AMPs in the ongoing fight against antibiotic resistance.

4.
Front Vet Sci ; 11: 1368725, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500602

RESUMO

Japanese encephalitis virus (JEV), a member of the Flaviviridae family and a flavivirus, is known to induce acute encephalitis. Vimentin protein has been identified as a potential receptor for JEV, engaging in interactions with the viral membrane protein. The Fc fragment, an integral constituent of immunoglobulins, plays a crucial role in antigen recognition by dendritic cells (DCs) or phagocytes, leading to subsequent antigen presentation, cytotoxicity, or phagocytosis. In this study, we fused the receptor of JEV vimentin with the Fc fragment of IgG and expressed the resulting vimentin-Fc fusion protein in Escherichia coli. Pull-down experiments demonstrated the binding ability of the vimentin-Fc fusion protein to JEV virion in vitro. Additionally, we conducted inhibition assays at the cellular level, revealing the ability of vimentin-Fc protein suppressing JEV replication, it may be a promising passive immunotherapy agent for JEV. These findings pave the way for potential therapeutic strategies against JEV.

5.
Anal Methods ; 16(9): 1390-1398, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38353054

RESUMO

Accidental ingestion of poisonous mushrooms leading to poisoning is a global issue. The most important and lethal toxin causing mushroom poisoning is α-amanitin, with a lethal dose of about 0.1 mg kg-1. Rapid detection of wild mushrooms before consumption or rapid identification of toxins after poisoning can effectively reduce the occurrence of fatalities. This study established a method for detecting α-amanitin using carbon dots/AuNPs nanoenzymes (D-Glu-CDs/AuNPs) with robust peroxidase-like activity. This nanoenzyme was prepared employing glucose carbon dots and sodium citrate as reducing and stabilizing agents, respectively. It could oxidize the substrate TMB (tetramethylbenzidine) to produce blue o-TMB. When α-amanitin specifically bound to the active site of the nanoenzyme, a resultant decrease was observed in catalytic activity and the absorbance value at 652 nm. The regression equation Y = -0.06083x + 0.9643, with an R2 value of 0.996, was obtained. The limit of detection was determined to be 48.03 ng mL-1, and the recoveries in urine ranged from 91.2% to 97.6%. This method enabled the visualization of α-amanitin, and the whole detection process was completed within 20 min. The approach holds promise for the quantitative and qualitative determination of α-amanitin in urine samples.


Assuntos
Agaricales , Nanopartículas Metálicas , Alfa-Amanitina , Ouro , Carbono , Colorimetria , Agaricales/química
6.
Int J Biol Macromol ; 255: 128085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977454

RESUMO

Rabies has been with humans for a long time, and its special transmission route and almost 100 % lethality rate made it once a nightmare for humans. In this study, by predicting the rabies virus glycoprotein outer membrane region and nucleoprotein B-cell antigenic epitopes, the coding sequence of the predicted highly antigenic polypeptide region obtained was assembled using the eukaryotic expression vector pcDNA3.1(-), and then E. coli was used as the delivery vector. The immunogenicity and protective properties of the vaccine were verified by in vivo and in vitro experiments, which demonstrated that the vaccine could produce antibodies in mice and prolong the survival time of mice exposed to the strong virus without any side effects. This study demonstrated that the preparation of an oral rabies DNA vaccine using food-borne microorganisms as a transport vehicle is feasible and could be a new strategy to eradicate rabies starting with wild animals.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Vacinas de DNA , Humanos , Animais , Camundongos , Raiva/prevenção & controle , Escherichia coli , Anticorpos Antivirais , Vacina Antirrábica/genética , Vírus da Raiva/genética , Epitopos de Linfócito B/genética
7.
Anal Bioanal Chem ; 416(1): 299-311, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37932512

RESUMO

Methylmercury (MeHg+) is a common form of organic mercury that is substantially more toxic than inorganic mercury and is more likely to accumulate in organisms through biological enrichment. Therefore, developing a method to enable the specific and rapid detection of MeHg+ in seafood is important and remains challenging to accomplish. Herein, a rapid, label-free fluorescence detection method for MeHg+ determination was developed based on SYBR Green I. The detection system implemented "add and measure" detection mode can be completed in 10 min. Under optimal assay conditions, the detection platform showed a linear relationship with the concentration of MeHg+ within 1-50 nM (Y = 8.573x + 42.89, R2 = 0.9928), with a detection limit of 0.3218 nM. The results obtained for competitive substances, such as inorganic mercury ions and anions, show a high specificity of the method. In addition, this method successfully detected MeHg+ in seawater and marine products, with an accompanying spike recovery rate of 96.45-105.1%.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Fluorometria , Água do Mar
8.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069041

RESUMO

Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Neoplasias Gástricas , Humanos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Neoplasias Gastrointestinais/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Neoplasias Gástricas/tratamento farmacológico , Antibacterianos/farmacologia
9.
Vaccines (Basel) ; 11(12)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38140265

RESUMO

Hepatitis B virus (HBV) infection is a global public health problem that is closely related to liver cirrhosis and hepatocellular carcinoma (HCC). The prevalence of acute and chronic HBV infection, liver cirrhosis, and HCC has significantly decreased as a result of the introduction of universal HBV vaccination programs. The first hepatitis B vaccine approved was developed by purifying the hepatitis B surface antigen (HBsAg) from the plasma of asymptomatic HBsAg carriers. Subsequently, recombinant DNA technology led to the development of the recombinant hepatitis B vaccine. Although there are already several licensed vaccines available for HBV infection, continuous research is essential to develop even more effective vaccines. Prophylactic hepatitis B vaccination has been important in the prevention of hepatitis B because it has effectively produced protective immunity against hepatitis B viral infection. Prophylactic vaccines only need to provoke neutralizing antibodies directed against the HBV envelop proteins, whereas therapeutic vaccines are most likely needed to induce a comprehensive T cell response and thus, should include other HBV antigens, such as HBV core and polymerase. The existing vaccines have proven to be highly effective in preventing HBV infection, but ongoing research aims to improve their efficacy, duration of protection, and accessibility. The routine administration of the HBV vaccine is safe and well-tolerated worldwide. The purpose of this type of immunization is to trigger an immunological response in the host, which will halt HBV replication. The clinical efficacy and safety of the HBV vaccine are affected by a number of immunological and clinical factors. However, this success is now in jeopardy due to the breakthrough infections caused by HBV variants with mutations in the S gene, high viral loads, and virus-induced immunosuppression. In this review, we describe various types of available HBV vaccines, along with the recent progress in the ongoing battle to develop new vaccines against HBV.

10.
Sci Adv ; 9(36): eadi1984, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672584

RESUMO

Magnetic skyrmions are topologically protected quasiparticles that are promising for applications in spintronics. However, the low stability of most magnetic skyrmions leads to either a narrow temperature range in which they can exist, a low density of skyrmions, or the need for an external magnetic field, which greatly limits their wide application. In this study, high-density, spontaneous magnetic biskyrmions existing within a wide temperature range and without the need for a magnetic field were formed in ferrimagnets owing to the existence of a negative thermal expansion of the lattice. Moreover, a strong connection between the atomic-scale ferrimagnetic structure and nanoscale magnetic domains in Ho(Co,Fe)3 was revealed via in situ neutron powder diffraction and Lorentz transmission electron microscopy measurements. The critical role of the negative thermal expansion in generating biskyrmions in HoCo3 based on the magnetoelastic coupling effect is further demonstrated by comparing the behavior of HoCo2.8Fe0.2 with a positive thermal expansion.

11.
Nat Commun ; 14(1): 4439, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488108

RESUMO

Negative thermal expansion (NTE) alloys possess great practical merit as thermal offsets for positive thermal expansion due to its metallic properties. However, achieving a large NTE with a wide temperature range remains a great challenge. Herein, a metallic framework-like material FeZr2 is found to exhibit a giant uniaxial (1D) NTE with a wide temperature range (93-1078 K, [Formula: see text]). Such uniaxial NTE is the strongest in all metal-based NTE materials. The direct experimental evidence and DFT calculations reveal that the origin of giant NTE is the couple with phonons, flexible framework-like structure, and soft bonds. Interestingly, the present metallic FeZr2 excites giant 1D NTE mainly driven by high-frequency optical branches. It is unlike the NTE in traditional framework materials, which are generally dominated by low energy acoustic branches. In the present study, a giant uniaxial NTE alloy is reported, and the complex mechanism has been revealed. It is of great significance for understanding the nature of thermal expansion and guiding the regulation of thermal expansion.

12.
Biomed Pharmacother ; 163: 114904, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207431

RESUMO

More than 250 million people worldwide have chronic hepatitis B virus (HBV) infections, resulting in over 1 million annual fatalities because HBV cannot be adequately treated with current antivirals. Hepatocellular carcinoma (HCC) risk is elevated in the presence of the HBV. Novel and powerful medications that specifically target the persistent viral components are needed to remove infection. This study aimed to use HepG2.2.15 cells and the rAAV-HBV1.3 C57BL/6 mouse model established in our laboratory to examine the effects of 16F16 on HBV. The transcriptome analysis of the samples was performed to examine the impact of 16F16 therapy on host factors. We found that the HBsAg and HBeAg levels significantly decreased in a dose-dependent manner following the 16F16 treatment. 16F16 also showed significant anti-hepatitis B effects in vivo. The transcriptome analysis showed that 16F16 regulated the expression of several proteins in HBV-producing HepG2.2.15 cells. As one of the differentially expressed genes, the role of S100A3 in the anti-hepatitis B process of 16F16 was further investigated. The expression of the S100A3 protein significantly decreased following the 16F16 therapy. And upregulation of S100A3 caused an upregulation of HBV DNA, HBsAg, and HBeAg in HepG2.2.15 cells. Similarly, knockdown of S100A3 significantly reduced the levels of HBsAg, HBeAg, and HBV DNA. Our findings proved that S100A3 might be a new target for combating HBV pathogenesis. 16F16 can target several proteins involved in HBV pathogenesis, and may be a promising drug precursor molecule for the treatment of HBV.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Neoplasias Hepáticas , Animais , Camundongos , DNA Viral/genética , Perfilação da Expressão Gênica , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B , Hepatite B Crônica/tratamento farmacológico , Camundongos Endogâmicos C57BL , Transcriptoma , Humanos , Células Hep G2/metabolismo , Células Hep G2/virologia , Antivirais/farmacologia
13.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36729943

RESUMO

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

14.
Biomater Sci ; 11(8): 2711-2725, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36802175

RESUMO

Bacterial infection, tissue hypoxia, and inflammatory and oxidative stress are several key problems in wound healing of chronic infections. Herein, a multi-enzyme-like activity exhibiting multifunctional hydrogel made up of mussel-inspired carbon dot reduced-Ag (CDs/AgNPs) and Cu/Fe-nitrogen-doped carbon (Cu,Fe-NC) was designed. Due to the loss of glutathione (GSH) and oxidase (OXD)-like activity of the nanozyme (decomposes O2 to generate a superoxide anion radical (O2˙-) and hydroxyl radical production (˙OH)), the multifunctional hydrogel exhibited excellent antibacterial performance. More importantly, during the bacterial elimination within the inflammatory phase of wound healing, the hydrogel could act as a catalase (CAT)-like agent to supply adequate O2 by catalyzing intracellular H2O2 for hypoxia abatement. The catechol groups on the CDs/AgNPs endowed them with the dynamic redox equilibrium properties of phenol-quinones, thus providing the hydrogel with mussel-like adhesion properties. The multifunctional hydrogel was shown to excellently promote bacterial infection wound healing and maximize the efficiency of nanozymes.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Humanos , Bactérias , Carbono , Glutationa , Hipóxia
15.
Front Bioeng Biotechnol ; 10: 977159, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425652

RESUMO

Background and Purpose: Chronic wound infections and the development of antibiotic resistance are serious clinical problems that affect millions of people worldwide. Cathelicidin-DM, an antimicrobial peptide from Duttaphrynus melanostictus, has powerful antimicrobial activity and wound healing efficacy. So, it could be a potential candidate to address this problem. In this paper, we investigate the wound healing mechanism of cathelicidin-DM to establish a basis for preclinical studies of the drug. Experimental Approach: The effects of cathelicidin-DM on cell proliferation and migration, cytokines, and mitogen-activated protein kinase (MAPK) signaling pathways were examined. Then mice whole skin wound model was constructed to evaluate the wound healing activity of cathelicidin-DM, and further histological changes in the wounds were assessed by hematoxylin-eosin staining (H&E) and immunohistochemical assays. Key Results: Cathelicidin-DM promotes the proliferation of HaCaT, HSF, and HUVEC cells in a concentration-dependent manner and the migration of HSF, HUVEC, and RAW.264.7 cells. Moreover,cathelicidin-DM can involve in wound healing through activation of the MAPK signaling pathway by upregulating phosphorylation of ERK, JNK, and P38. However, cathelicidin-DM didn't affect the secretion of IL-6 and TNF-α. At the animal level, cathelicidin-DM accelerated skin wound healing and early debridement in mice as well as promoted re-epithelialization and granulation tissue formation, α-SMA expression, and collagen I deposition in mice. Conclusion and Implications: Our data suggest that cathelicidin-DM can be engaged in the healing of infected and non-infected wounds through multiple pathways, providing a new strategy for the treatment of infected chronic wounds.

16.
Sensors (Basel) ; 22(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36433193

RESUMO

Fumonisin FB is produced by Fusarium moniliforme Sheld, of which FB1 is the most common and the most toxic. The establishment of a rapid detection method is an important means to prevent and control FB1 pollution. A highly sensitive fluorescent sensor based on an aptamer for the rapid detection of fumonisin B1 (FB1) in corn was established. In this study, 5-carboxyfluorescein (FAM) was labeled on the aptamer of FB1 (F10). F10 was adsorbed on the surface of graphene oxide (GO) by π-π stacking. The FAM fluorescence signal could be quenched by fluorescence resonance energy transfer between fluorescent molecules and graphene oxide (GO). In the presence of FB1, the binding efficiency of the aptamer to GO was reduced. Therefore, the content of FB1 in corn samples was determined by fluorescence measurements of mixed FAM-labeled F10, GO and corn samples. This method had a good linear relationship in an FB1 concentration range of 0-3000 ng/mL. The equation was y = 0.2576x + 10.98, R2 = 0.9936. The limit of detection was 14.42 ng/mL, and the limit of quantification was 43.70 ng/mL. The recovery of a spiked standard in the corn sample was 89.13-102.08%, and the time of detection was 30 min.


Assuntos
Aptâmeros de Nucleotídeos , Fumonisinas , Transferência Ressonante de Energia de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Zea mays/química
17.
Open Life Sci ; 17(1): 1505-1514, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448055

RESUMO

A histidine (His)-tag is composed of six His residues and typically exerts little influence on the structure and solubility of expressed recombinant fusion proteins. Purification methods for recombinant proteins containing His-tags are relatively well-established, thus His-tags are widely used in protein recombination technology. We established a one-step enzyme-linked immunosorbent assay (ELISA) for His-tagged recombinant proteins. We analyzed variable heavy and light chains of the anti-His-tag monoclonal antibody 4C9 and used BLAST analyses to determine variable zones in light (VL) and heavy chains (VH). VH, VL, and alkaline phosphatase (ALP) regions were connected via a linker sequence and ligated into the pGEX-4T-1 expression vector. Different recombinant proteins with His tags were used to evaluate and detect ALP-scFv activity. Antigen and anti-His-scFv-ALP concentrations for direct ELISA were optimized using the checkerboard method. ZIKV-NS1, CHIKV-E2, SCRV-N, and other His-tag fusion proteins demonstrated specific reactions with anti-His-scFv-ALP, which were accurate and reproducible when the antigen concentration was 50 µg mL-1 and the antibody concentration was 6.25 µg mL-1. For competitive ELISA, we observed a good linear relationship when coating concentrations of recombinant human anti-Müllerian hormone (hAMH) were between 0.78 and 12.5 µg mL-1. Our direct ELISA method is simple, rapid, and accurate. The scFv antibody can be purified using a prokaryotic expression system, which provides uniform product quality and reduces variations between batches.

18.
Anal Methods ; 14(40): 3953-3960, 2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36196953

RESUMO

Mycotoxin, common in agricultural products, is a small secondary metabolite with strong toxicity. Fumonisin B1 (FB1) is the most common and the most toxic. Establishing a rapid detection method is important for preventing and controlling FB1 pollution. This study prepared carbon dots (CDs) from 2,2'-dithiosalicylic acid (DTSA). Tetramethylbenzidine (TMB) can be catalyzed to produce fluorescence by CDs, while FB1 can adhere to the surface of CDs, decreasing fluorescence. Aptamer F10 of FB1 combines with FB1 attached to the surface of CDs to restore the catalytic ability of CDs and increase the fluorescence value. This method has good linearity in the FB1 concentration range from 0 to 1.0 µg mL-1. The standard curve was Y = -0.2512x + 661.4, R2 = 0.9903, the limit of detection (LOD) was 17.67 ng mL-1 and limit of quantitation (LOQ) was 53.55 ng mL-1. The recovery of the corn sample was 89.83-98.62%, and the detection time was 30 min.


Assuntos
Fumonisinas , Micotoxinas , Carbono , Oligonucleotídeos , Catálise
19.
Sensors (Basel) ; 22(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36081171

RESUMO

Fumonisin B1 (FB1) is a strong mycotoxin that is ubiquitous in agricultural products. The establishment of rapid detection methods is an important means to prevent and control FB1 contamination. In this study, an improved enzyme-linked oligonucleotide assay (ELONA) method was designed and tested to detect the contents of FB1 in maize (corn) samples. F10 modified with biotin was bound to an enzyme label plate that was coated with streptavidin (SA) in advance, and carbon dots (CDs) were used to catalyze the color of tetramethylbenzidine (TMB). The complementary chain of F10 was modified with an amino group and coupled with CDs to obtain conjugates. The sample and conjugates were then added to the enzyme plate coated with F10 (an FB1 aptamer). Upon completion of the color reaction, the absorbance was measured at 450 nm. The LOD of this method was 4.30 ng/mL and the LOQ was 13.03 ng/mL. We observed a linear relationship in the FB1 concentration range of 0-100 ng/mL. The standard curve was y = -0.001482 × x + 0.3463, R2 = 0.9918, and the experimental results could be directly measured visually. The recovery of the maize sample was 97.5-99.23% and 94.54-99.25%, and the total detection time was 1 h.


Assuntos
Fumonisinas , Hemina , Carbono , Contaminação de Alimentos , Fumonisinas/análise , Oligonucleotídeos , Zea mays
20.
Int J Mol Sci ; 23(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36077500

RESUMO

Antimicrobial peptides (AMPs) are essential components of the mucosal barrier of the female reproductive tract (FRT) and are involved in many important physiological processes, including shaping the microbiota and maintaining normal reproduction and pregnancy. Gynecological cancers seriously threaten women's health and bring a heavy burden to society so that new strategies are needed to deal with these diseases. Recent studies have suggested that AMPs also have a complex yet intriguing relationship with gynecological cancers. The expression level of AMPs changes during tumor progression and they may act as promising biomarkers in cancer detection and prognosis prediction. Although AMPs have long been considered as host protective, they actually play a "double-edged sword" role in gynecological cancers, either tumorigenic or antitumor, depending on factors such as AMP and cancer types, as well as AMP concentrations. Moreover, AMPs are associated with chemoresistance and regulation of AMPs' expression may alter sensitivity of cancer cells to chemotherapy. However, more work is needed, especially on the identification of molecular mechanisms of AMPs in the FRT, as well as the clinical application of these AMPs in detection, diagnosis and treatment of gynecological malignancies.


Assuntos
Peptídeos Antimicrobianos , Neoplasias dos Genitais Femininos , Microbiota , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...